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Abstract
Vehicle-borne laser-scanned point clouds have become
increasingly important 3D data sources in fields such as
digital city modeling and emergency response management.
Aiming at reducing the technical bottlenecks of management
and visualization of very large point cloud data sets, this
paper proposes a new spatial organization method called
3DOR-Tree, which integrates Octree and 3D R-Tree data
structures. This method utilizes Octree’s rapid convergence
to generate R-Tree leaf nodes, which are inserted directly
into the R-Tree, thus avoiding time-consuming point-by-point
insertion operations. Furthermore, this paper extends the 
R-Tree structure to support LOD (level of detail) models.
Based on the extended structure, a practical data manage-
ment method is presented. Finally, an adaptive control
method for LODS of point clouds is illustrated. Typical
experimental results show that our method possesses 
quasi-real-time index construction speed, a good storage
utilization rate, and efficient visualization performance.

Introduction
The main requirements for 3D city models have been identi-
fied as including high coverage, high fidelity, and being up
to date, which are precisely the main shortcomings of
conventional 3D modeling approaches (Nebiker et al., 2010).
Vehicle-borne laser scanning systems, such as Riegl’s VMX-
250, Topcon’s IP-S2, and Optech’s Lynx, provide a good
solution for the conflict between the rigorous requirements of
3D modeling and finite human and financial resources. Such
mobile mapping systems combine multiple 3D laser scanners,
GNSS, and IMU technologies and cameras to kinematically
acquire 3D point clouds at centimeter-level density and 5 cm
accuracy (Barber et al., 2008; Leberl et al., 2010). With
accurate calibration between the scanner and the camera,
each laser point can be associated to a RGB value from the
optical image (Pu et al., 2009). Their raw data production
rates are on the order of 360 GB/hr, which means that the
data volume will approach the Terabyte level within three
hours of operation. The unprecedented acquisition rate and
high spatial resolution pose a considerable challenge for the
management and visualization of the point clouds.

An Efficient Point Cloud Management 
Method Based on a 3D R-Tree

Jun Gong, Qing Zhu, Ruofei Zhong, Yeting Zhang, and Xiao Xie

As high-density 3D laser scanning becomes more
popular, there is an increasing demand for automatic
postprocessing of the large volumes of point cloud data that
are typically produced during a project. Most postprocess-
ing, such as filtering, classification, and feature extraction,
depends greatly on the performance of the organization and
management of the point clouds, which notably limits
further usages for Light Detection and Ranging (lidar) (Cheng
et al., 2011). The computer graphics community has devel-
oped several specific data organization methods to accelerate
visualization efficiency and quality, but these methods
mostly focus on a single object and cannot tackle complex
environments, such as those found in even small-scale laser
scanning projects.

Because point cloud data are of large volume and high-
resolution, adaptive visualization with level of detail (LOD)
is a suitable strategy. Surfels and Qsplat are two promising
approaches for LOD point rendering, but both require time-
consuming preprocessing (Pfister et al., 2000; Rusinkiewicz
and Levoy, 2000). Their unbalanced tree structures tend to
induce high tree depths and increasingly worse query
performance. Improvements in the implementation of these
methods have been obtained by adopting some advanced
techniques, such as parallel processing, GPU rendering, and
data caches (Wand et al., 2008).

Managing large-scale point clouds is a very active
research area in the spatial information community. Huang
(2006) presents an organizational approach based on sequen-
tial Quad-trees for airborne lidar data. A segment mapping
technique is adopted to randomly extract LOD lidar data,
which is linked with nodes at different levels. Although it
implements adaptive rendering for lidar data, random
extraction cannot ensure the best simplification result.
Furthermore, the danger of producing an unbalanced index
structure and its subsequent impact on point cloud manage-
ment performance is also a factor. Lu et al. (2008) intro-
duced a nested structure integrating Octree and binary tree
to manage very large point cloud data sets. However, the
space partitioning is one-dimensional and cannot take into
consideration the characteristics of 3D space. Kovac and
Zalik (2010) also adopt a hierarchical and out-of-core
approach to manage point clouds. Ma and Wang (2011)
distribute large point cloud data sets among multiple servers
and boost up efficiency using parallel access.

3D R-Tree adaptively adjusts index structures according to
the real data. Therefore, object distribution has little influ-
ence on R-Tree, making them a promising true 3D spatial
access method (Zhu et al., 2007). However, when extending
into 3D space, node overlapping easily induces multipath



queries, which becomes the main reason for low efficiency.
Gong et al. (2011) introduced a global optimization mecha-
nism and 3D cluster analysis to build the 3D R-Tree index
dynamically, a process that can solve the problem of serious
node overlapping. This approach extends the R-Tree index
structure and integrates LOD information into intermediate
nodes. Theoretically, its dynamic updating and adaptive
adjusting capabilities are suitable for scattered and uneven 3D
point clouds. However, because of the algorithm’s complex-
ity, so far, no related literature has been published.

This paper addresses that issue and is organized as
follows: following the Introduction, followed by a proposed
new 3D spatial index method: 3DOR-Tree. The next Section
introduces how the 3DOR-Tree structure is extended to
integrate the LOD model, and next, a data organization
approach based on 3DOR-Tree is presented for huge point
clouds. The next Section describes the adaptive control of
LODS for point cloud scenes, followed by the experimental
results in comparison with other methods. Some conclu-
sions are given in the final Section.

A New 3D Spatial Index Method: 3DOR-Tree
In vehicle-borne laser-scanning applications, the 3D point
cloud density is very high and can have a very uneven
spatial distribution with large variations of height over
relatively short distances. These factors introduce major
challenges to spatial index construction. In one cubic meter,
there may exist any range between a few points and a few
hundreds of thousands of points. Traditional methods, such
as Cell and Quadtree, are based on 2D space and have been
extended into 3D space through 3D Cell and Octree. How-
ever, with these structures, a great deal of empty nodes may
be produced because of the uneven spatial distribution of
the data, which makes for very low spatial utilization and
rapidly deteriorating query performance.

R-Tree construction methods can be divided into
dynamic and static types. In static methods, bottom-up
construction is adopted, which can ensure high efficiency
and spatial utilization, but it is difficult to generate the
optimal structure, and such methods do not support updat-
ing of the tree. In dynamic methods, adaptive mechanisms
are applied to ensure a reasonable tree shape, but the
construction performance and spatial utilization are not as
good as than static methods. Although dynamic methods can
better satisfy the spatial data management requirement,
every point is inserted into an index structure using a series
of complex operations, including node choosing and node
splitting. Obviously, this is unreasonable for the very large
data sets commonly found in laser scanning projects. This
paper adopts a new method, which integrates both static
and dynamic methods in order to achieve both high con-
struction efficiency and adaptive updating.

The result is a hybrid spatial index method that inte-
grates R-Tree and Octree structures (3D OCTR-Tree; abbreviated
as 3DOR-Tree). Before constructing a 3DOR-Tree structure,
some parameters should be set by the user. The first are the
fanout parameters of the 3D R-Tree (the maximum and
minimum number of tuples in each R-Tree node, m and M).
The second is the Octree’s convergence condition, which is
the maximum number of tuples in an Octree leaf node. In
our method, the Octree’s convergence condition equals the
maximum fanout value of the 3D R-Tree.

The flow chart of the 3DOR-Tree construction algorithm
is shown in Figure 1, and key issues of this algorithm are
discussed in detail below. In the process of 3DOR-Tree
construction, an Octree is utilized to subdivide the 3D space
quickly, and subdivision continues until the point number
in the leaf nodes is less than or equal to the maximum

fanout value. If child nodes satisfy this fanout condition in
the R-Tree, their bounding box will be recalculated and then
inserted into the 3D R-Tree as leaf nodes. If there exist child
nodes whose point number is less than the minimum fanout
value, points in these child nodes are collected and sequen-
tially reorganized into leaf nodes of the R-Tree and, finally,
inserted into the 3DOR-Tree:

Algorithm Description: spatial index construction algorithm of
one point data set;
Algorithm Input: R-Tree fanout parameters (m, M);
Algorithm Output: 3DOR-Tree structure;

• Step 1: Find the minimal bounding box of all points (MinX,
MinY, MinZ, MaxX, MaxY, MaxZ). From the beginning of
(MinX, MinY, MinZ), find the minimal cubic bounding box
as Octree root node, Node. Create two new point arrays,
named Array1 and Array2. Enter Step 2;

• Step 2: If point number in Node �= M, find its minimal
bounding box and make it the root node of 3DOR-Tree, then
enter Step 9; If point number in Node � M, enter Step 3;

• Step 3: Subdivide Node into 8 child nodes Childi (I =
0,1,…,7) evenly and distribute points in Node into child
nodes, then enter Step 4;

• Step 4: Clear Array1. Traverse child nodes Childi (i =
0,1,…,7). If point number in Childi � m, add its points into
Array1. Enter Step 5;

• Step 5: Let iPtNum = the point number in Array1. If iPtNum
� 2*M, enter Step 6; If iPtNum is in (M, 2*M], the points in
Array1 are evenly divided into two leaf nodes and inserted
into R-Tree, then enter Step 7; If iPtNum is in [m, M], the
points in Array1 are reorganized into one leaf node and
inserted into R-Tree, then enter Step 7; If iPtNum � m, insert
the points in Array1 into Array2, then enter Step 7;
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Figure 1. Flow chart of the 3DOR-Tree construction
procedure.



• Step 6: Let k = Rounding(iPtNum/iMax). The preceding 
(k-1)*M points are divided into (k-1) leaf nodes and inserted
into R-Tree. The number of the resting points, iRestNum,
equals iPtNum-(k-1)*M. If iRestNum = M, the resting points
are reorganized as one leaf node and inserted into R-Tree. If
iRestNum � M, divide the resting points evenly into two leaf
nodes and insert them into R-Tree. Enter Step 7;

• Step 7: Traverse every child node Childi (i =0,1,…,7). If the
point number in Childi is in [m, M], find its minimal
bounding box and insert it into R-Tree; If the point number
in Childi � M, let Node = Childi, then enter Step 3;

• Step 8: If all Octree subdivisions end, insert the points from
Array2 into R-Tree. Enter Step 9;

• Step 9: Exit.

The Octree is utilized to allocate neighboring points into
the same or adjacent nodes. A node is used as an insertion
unit to insert points in bulk to avoid time-consuming
incremental-insertion operations, and hence, significantly
boost index generation efficiency. The dynamic insertion
mode allows the tree structure to have good spatial adapta-
tion, which ensures a balanced tree structure and sound
spatial utilization. Figure 2 shows the Octree structure of a
point cloud data set (splitting parameter is 100). Figure 3
depicts the corresponding 3DOR-Tree structure (fanout
parameters are 40 and 100).

3DOR-Tree Extended Structure Concerning LoDs
In generic point cloud applications, the data volume is very
large, with some projects containing a billion or more points.
Such data sets usually far surpass the capabilities of the
average computer system, especially if real-time interaction
with the data is desired. The most influential factor on system
performance and data interaction is LOD; the greater the LOD to
be displayed, the greater the system performance must be.
Because vehicle-borne laser scanning applications require high
interactivity, an efficient LOD strategy becomes a prerequisite,
which means that the proper level of detail should be selected
to represent point cloud scenes in real time according to view
length and software/hardware performance. Previous research
about integrating R-Tree and LODS tried to utilize R-Tree’s
hierarchical structure to realize the dual functions of object
query and LOD query (Kofler, 1998; Zlatanova, 2000). The
minimal bounding box of an R-Tree node is regarded as a low
LOD representation in those approaches, which obviously
cannot satisfy high-quality visualization.

A traditional R-Tree only manages object models in a
leaf-node layer. The structure developed in this paper
extends the management of object models to intermediate
nodes, as is illustrated in Figure 4. A leaf-node layer
manages all objects within the layer. A single representative
object (for example, the one nearest to the centroid of the
node) is chosen and stored in the father node as the coarser
object model. With this strategy, the number of objects in a
father node is equal to the number of child nodes.
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Figure 2. Leaf node layer in Octree.

Figure 3. Leaf node layer in 3DOR-Tree.

Figure 4. 3DOR-Tree structure.



Based on the hierarchical structure of an R-Tree, the leaf
nodes denote the highest LOD, intermediate nodes denote a
medium LOD, and the root node represents the lowest LOD.
Every layer has one range, which includes the nearest
distance and the farthest distance. The ranges of neighboring
layers are seamless, and all nodes in the same layer have the
same range. When view distance is in the range of one node,
point models in the node will be accessed and rendered. In
the mode of panoramic representation, only points in the
root node are accessed. When the viewpoint is closer, the
viewshed become smaller, and displayed details gradually
increase. Figure 5 shows an example of the LOD representa-
tion of a point cloud.

Point Cloud Organization Method Based on 3DOR-Tree
Because of practical constraints related to managing very
large file sizes, large-scale point cloud projects are organized
in a project-cloud-point hierarchy. In the data-capturing
process, vehicle-borne laser scanning systems typically
partition the data into single point clouds of several million
points. The size of a point cloud file may amount to several
hundred MBytes. The collection of such point clouds in one
project is called a “point cloud project.” Our experience has
shown that the point cloud project of one small village may
reach dozens of GBytes. A feature of the 3DOR-Tree structure
is that it can manage such large point cloud projects through
implementation in commercial DBMS.

In our file organization mode, one point cloud project is
a file catalog that includes many point cloud files. One
point cloud file is a single binary-format file, whose format
is defined in Figure 6. One single point cloud file comprises
both header and entity parts. The metadata of the point
cloud is stored in the header part, including version, data
volume, fanout parameters, the total number of points and
layers, centroid coordinates, compression flag, and the root
node address. Point coordinates in the entity part are
double-precision real values relative to the centroid coordi-
nates, which allows them to be expressed as small values
while maintaining the coordinates’ precision. Moreover, if
the range in each coordinate axis is less than 655.35 meters
and centimeter-level precision is required, the coordinates
can be expressed as a 2-byte short integer after being
multiplied by 100, which allows data to be compressed to
25 percent of its original size.

A 3D R-Tree index structure is adopted to manage point
data entities. To avoid repetitive storage, the representative
points from child nodes are moved to father nodes so that
the number of points in low-level nodes will be minus one.

To realize a cache mechanism, father nodes need to
record the storage address of child nodes, i.e., the offset of
child nodes relative to the starting address of the point
cloud file. R-Tree storage can be classified as either breadth
traversal storage or depth traversal storage. The breadth
traversal storage sequence means that node data is stored in
sequence at each R-Tree level, beginning at the root layer.
Nodes are recorded to the point file layer by layer. The
shortcoming of this method is that a father node cannot be
directly stored with its child nodes. The depth traversal
storage sequence means that the root node is first recorded,
followed by its subtrees, so that every node is recorded in
the same way as a root node. The problem with this struc-
ture is that sibling nodes in middle layers cannot be
recorded together. Figures 7 and 8 illustrate the principles of
breadth traversal and depth traversal storage, respectively.

Only point data in the top layers is required to repre-
sent the whole scene. When the viewpoint approaches local
scene level, child nodes will be visited using their father
node until the leaf nodes are reached. Therefore, neither of
the two storage sequences can ensure that, on any occasion,
points that are visited at the same time are stored together.
To boost the efficiency, a hybrid scheme is adopted to
record the 3DOR-Tree.

Let the leaf layer be the 1st layer. When a project is
opened, the whole scene is presented. If a panoramic view
requires point data in the 3rd layer and above, points in these
layers should be recorded in breadth traversal sequence.
Points in the lowest two layers are stored in depth traversal
sequence. From a practical perspective, the total amount of
data in the point cloud project determines the panoramic
boundary layer. If the data volume is relatively small, then
the layer can be lower, and vice versa. The principle of our
approach is explained in Figure 9, in which the 3rd layer is
the boundary. Nodes that will probably be visited at the
same time are combined, thus benefiting from fast access
time. Because father nodes record the addresses of all child
nodes, a file mapping technique is easily adopted to access
points in any node from the root layer to the leaf layer,
which is theoretically simple and practically efficient.
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Figure 5. LOD representation of point clouds: (a) high LOD, (b) medium LOD, and (c) low LOD.

(a) (b) (c)
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Figure 6. Data organization of massive point cloud data sets.

Figure 7. The principle of breadth traversal storage. Figure 8. The principle of depth traversal storage.

Figure 9. The principle of the hybrid storage approach.



Adaptive Visualization Method Based on 3DOR-Tree
Software and hardware environments differ greatly, making
adaptive control methods helpful when dealing with a broad
range of computing systems. A critical aspect of data
management is how to manage such adaptive approaches.
Usually, the importance of objects can be quantitatively
described by some rules, such as view length. Points are
then rendered based on importance until the particular
system’s limit is reached.

LoD Definition Parameters
In the 3DOR-Tree model, LODS are distributed into the nodes
in corresponding layers of the R-Tree. Controlling how
various LODS are defined is performed using a set of defini-
tion parameters, and they are here described in detail.

First, the functional range of every LOD must be properly
defined to ensure a stable quantity of visible points in
different viewsheds. Take an ideal 3D scene, one in which
the points are evenly distributed and the nodes in all R-Tree
layers are also evenly distributed, as an example. Let the
view line be straight down, and locate one critical view. At
the view, LOD2 will be visible as rising up, so the visible
scene is fully represented in the highest LOD, LOD1. The
greatest view length for the visible scene equals the maxi-
mum value of LOD1’s functional range, d. In this way, the
second critical view can be found at which the visible scene
is fully represented in LOD2. At this time, the farthest view
length is approximately the farthest distance of LOD2, D.
Figure 10 denotes the scope comparisons in the above two
views. The fanout parameters in R-Tree, m and M, determine
that in a specific area, the ratio of node numbers in neigh-
boring layers is 1: m ~ 1:M. In our method, the point
number in any node also fits the fanout parameters, which
means that the point number in every node is similar. The
area ratio of the above two scenes is (D/d)2, and the ratio of
node numbers in neighboring layers is 1:m ~ 1:M. To ensure
similar node numbers in the two scenes, m � (D/d)2 � M.
The farthest distance of adjacent LODS should meet the
geometric relationship. In the condition of m = 40 and 
M = 100, 6 � D/d � 10, which can ensure almost the same
point numbers in different viewing fields.

In our method, three parameters are viewed as LOD
definition parameters, e.g., the number of R-Tree levels
(LevelNum), the farthest distance of the highest LOD
(FarDist), and the ratio of the farthest distances of adjacent

LODS (DistFactor). Suppose R-Tree has four levels, namely,
LevelNum = 4, then let FarDist = 15 m and DistFactor = 8.
The functional range of the 1st level is 0 ~ 15 m, the 2nd one
is 15 ~ 120 m, the 3rd one is 120 ~ 960 m, and the 4th one is
960 ~ 8000 m (the farthest distance of the final level may be
unlimited).

Adaptive Control of LoDs for a 3D Scene
According to the preceding section, the range of every level
can be adjusted by changing FarDist. When FarDist is made
larger, the range of every level also becomes larger. Hence,
the displayed complexity of a 3D scene can be changed by
adjusting FarDist. Adaptive control of the point cloud scene
can be achieved by adjusting FarDist. If the scene is to be
simplified, FarDist needs to be less, and vice versa.

Quantitative control of the 3D scene utilizing LOD
parameters will be discussed below. When the viewpoint is
close to the ground and the view line is horizontal, the
viewing field contains the most objects. Slod1 is the influen-
tial area of LOD1, and Slod2 is that of LOD2, which are respec-
tively calculated by Equations 1 and 2. Figure 11 illustrates
the influential area of LOD1 and LOD2:

(1)

(2)

where D is the farthest distance of the highest LOD (FarDist),
K is the ratio of the farthest distances of neighboring LODS
(DistFactor), and � is the horizontal angle of the view
frustum.

Both Slod1 and Slod2 are in proportional relationship with
D2. Suppose the 3D scene belongs to an ideal state in which
the original point density is basically even and the point
density in every level is also even. In this condition, the
overlay area of every level decides the point number inside,
so the processing cost is proportional to D2. In real-time
interaction, D may be adjusted according to previous frames
to deal with load variance. On the premise of a stable frame
rate, the richest LOD scene can be loaded and represented in
the limitation of the available main and video memory.

Experimental Analysis
The performance of the 3DOR-Tree was tested on a sample
data set of a small village captured by one vehicle-borne
laser scanning system. The true color 3D data was acquired
in 20 minutes and included all roads, building façades,
trees, and electricity lines. The data comprise 92 point

Slod2 � 1K 2 �12pD2*a/360,

Slod1 � pD2*a/360;
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Figure 10. The scope comparison of LOD1 and LOD2.
Figure 11. The comparison of the LOD1 and
LOD2 influential areas.



clouds, with each cloud made up of approximately 2-million
points. The total data volume was more than 16 GB and
approximately 220 million points. The computing environ-
ment was very modest: a laptop computer powered by an
Intel Duo T7500 CPU and 1 GB of main memory.

Index Construction Performance
The first test was to assess the efficiency of indexing a
single point cloud of 2,426,454 points from the data set. The
performance of the 3DOR-Tree structure was tested against
that of a standard Octree and of a dynamic 3D R-Tree. The
split parameter in the Octree was set to 100, and fanout
parameters in the 3D R-Tree were set to 40 and 100. These
same parameters were set for the 3DOR-Tree. Two items
relating to construction efficiency were compared: the time
for construction and the depth of the resulting tree. Figures
12 and 13 present the results.

In terms of speed, the Octree was constructed in just
five seconds, whereas the 3DOR-Tree took five times longer at
25 seconds. Both these results could be considered to
constitute near-real-time performance. At 574 seconds, the
dynamic 3D R-Tree took 23 times longer than the 3DOR-Tree
and 115 times longer than the Octree. Inspection of the
Octree’s structure showed an imbalance, with the depth of
leaf nodes ranging from 1 to 17. The depth of all leaf nodes
in the 3DOR-Tree was 4, and the corresponding value for the
dynamic 3D R-Tree was 5. It is easily understood from the
test results that the construction of the 3DOR-Tree satisfies
the quasi-real-time requirement. Its tree depth is balanced
and is less than the other two methods as, by its nature,
almost all leaf nodes are full. Hence, the number of nodes is
less so that the tree depth is smaller, which is of benefit to
the algorithm’s efficiency. It took approximately 40 minutes
to construct the 3DOR-Tree index for the whole data set with
the Octree and dynamic 3D R-Tree being faster and slower
proportional to the single point cloud results.

Storage Space Utilization Rate
Compared with the CPU and the main memory, the speed of
external storage access is typically two orders of magnitude
slower, with the result that data volume affects data sched-
uling performance and the user’s experience. As shown in
Figure 14, when compared with a standard ASCII text file, a
saving of over 90 percent can be achieved. When compared
with a leading commercial point cloud software, Pointools™,
a saving of 20 percent was observed.

Data Access and Visualization Performance
When comparing the time it takes to open the file,
Pointools™ took four minutes before the 220 million points
were ready for user interaction.

In our method, with the fanout parameters of 40 and 100,
point models in the 3rd level and higher do not exceed 105

points: (2*108/(40*40)). In the beginning of a project, only
points in the 3rd and higher levels are required. As these
levels are stored in breadth traversal sequence nodes, these
layers can be sequentially accessed, resulting in only a short
delay before the project can be viewed. Experimental results
show that opening the project only took four seconds. Figure 15
shows the 3rd level panoramic view of the sample project.

When stored in depth-first format, the project took
approximately three minutes before a user was able to
interact with the point cloud.

The relatively low specification of the computing
environment meant that the data cache should not exceed
200 MB and that less than 5 million points be rendered in a
single frame. The data cache will be automatically cleared
once the 200 MB limit is exceeded. The farthest distance of
the highest LOD was kept to approximately 15 meters, which
meant the amount of data scheduled in a single frame would
not exceed 10 MB and would take less than two seconds to
refresh. Because the rendering is part of a multithread
mechanism, the visualization task in the main thread will
not be influenced by such refresh times. Figure 16 is the LOD
description of the point cloud scene in which high details
are represented in the near distance and few details are
represented in the far distance.

Spatial Query Performance
3D mapping and modeling is one of the key tasks to be
formed on vehicle-borne laser scanning point clouds, and 3D
snapping operations are crucial to an efficient workflow.
Without an efficient spatial index, searching appropriate
target points from potentially billions of candidates is a time-
consuming process. When tested on a sample data set, it was
found that the powerful indexing capacity of the 3D R-Tree
makes snapping an instantaneous operation, which satisfies
user requirements for interactive mapping. Other operations,
such as moving through the point clouds and connecting
lines, were also performed in real time. Figure 17 shows the
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Figure 12. Comparison results of the spatial index
construction efficiency.

Figure 13. Comparison results of the tree depth. Figure 14. Comparison results of the spatial utilization.
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Figure 15. Panoramic view of a point project.

Figure 16. LOD representation in the near distance.

Figure 17. 3D mapping operation based on the management platform.



effects of some simple mapping operations using the
developed platform.

Conclusions
This paper introduces a new, fully 3D spatial index called
3DOR-Tree and proposes an efficient management method
based on LOD for very large point cloud data sets, such as
those acquired by vehicle-borne laser scanning technology.
Based on a natural hierarchical structure, the LOD model
management approach is useful for the adaptive visualiza-
tion of massive point clouds.

With the rapid development of sensor technologies, a
single point created by a laser scanning system may possess
four or more properties; thus, the creation of semantic
information by automatic classification and object extraction
brings new challenges to point cloud management. Seman-
tics can be viewed as another type of LOD, and further
research will aim at data fusion and the semantic manage-
ment of point clouds, which will realize advanced integra-
tion of panoramic images, vectors and semantics.
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